
© 2014 The MITRE Corporation. All rights reserved.

Approved for Public Release,14-2221

C o r e y K a l l e n b e r g

X e n o K o va h

J o h n B u t t e rw o r t h

S a m C o r n w e l l

Extreme Privilege Escalation
on Windows 8/UEFI Systems

@ c o r e yk a l

@ x e n o k o va h

@ jw b u t t e rw o r t h 3

@ s s c 0 r nw e l l

| 2 |

Focused Presentation Goals

Offensive people:

–Highlight an attack surface worth exploring

–Describe a versatile rootkit proof of concept

Defensive people:

–Highlight an attacker vector to be aware of

–Provide tools and insight to help you

© 2014 The MITRE Corporation. All rights reserved.

| 3 |

Attack Model (1 of 2)

 An attacker has gained administrator access on a victim

Windows 8 machine

 But they are still constrained by the limits of ring 3

© 2014 The MITRE Corporation. All rights reserved.

| 4 |

Attack Model (2 of 2)

 Attackers always want

– More Power

– More Persistence

– More Stealth

© 2014 The MITRE Corporation. All rights reserved.

| 5 |

Typical Post-Exploitation Privilege Escalation

 Starting with x64 Windows vista, kernel drivers must be signed and contain
an Authenticode certificate

 In a typical post-exploitation privilege escalation, the attacker wants to
bypass the signed driver requirement to install a kernel level rootkit

 Various methods to achieve this are possible, including:

– Exploit existing kernel drivers

– Install a legitimate (signed), but vulnerable, driver and exploit it

 This style of privilege escalation has been well explored by other
researchers such as [6][7].

 There are other, more extreme, lands the attacker may wish to explore

© 2014 The MITRE Corporation. All rights reserved.

| 6 |

Other Escalation Options (1 of 2)

 There are other more interesting post-exploitation options an
attacker may consider:

– Bootkit the system

– Install SMM rootkit

– Install BIOS rootkit

© 2014 The MITRE Corporation. All rights reserved.

| 7 |

Other Escalation Options (2 of 2)

 Modern platforms contain protections against these more exotic
post-exploitation privilege-escalations

– Bootkit the system (Prevented by Secure Boot)

– Install SMM rootkit (SMM is locked on modern systems)

– Install BIOS rootkit (SPI Flash protected by lockdown mechanisms)

© 2014 The MITRE Corporation. All rights reserved.

| 8 |

Extreme Privilege Escalation (1 of 2)

 This talk presents extreme privilege escalation

– Administrator userland process exploits the platform firmware

(UEFI)

– Exploit achieved by means of a new API introduced in Windows 8

© 2014 The MITRE Corporation. All rights reserved.

| 9 |

Extreme Privilege Escalation (2 of 2)

 Once the attacker has arbitrary code execution in the context of the
platform firmware, he is able to:

– Control other "rings" on the platform (SMM, Ring 0)

– Persist beyond operating system re-installations

– Permanently "brick" the victim computer

© 2014 The MITRE Corporation. All rights reserved.

| 10 |

Target Of Attack

 Modern Windows 8 systems ship with UEFI firmware

 UEFI is designed to replace conventional BIOS and provides a

well defined interface to the operating system

© 2014 The MITRE Corporation. All rights reserved.

| 11 |

UEFI Purpose

© 2014 The MITRE Corporation. All rights reserved.

 Initialize hardware

– Configure and lock security relevant parts of the hardware

 Find and transfer control to OS

| 12 |

Attacking UEFI

© 2014 The MITRE Corporation. All rights reserved.

BREAKING IN EARLIER == MORE PRIVILEGED

| 13 |

Windows 8 API

 Windows 8 has introduced an API that allows a privileged

userland process to interface with a subset of the UEFI interface

© 2014 The MITRE Corporation. All rights reserved.

| 14 |

EFI Variable Creation Flow

 Certain EFI variables can be created/modified/deleted by the
operating system

– For example, variables that control the boot order and platform
language

 The firmware can also use EFI variables to communicate
information to the operating system

© 2014 The MITRE Corporation. All rights reserved.

| 15 |

EFI Variable Consumption

 The UEFI variable interface is a conduit by which a less privileged
entity (admin Ring 3) can produce data for a more complicated
entity (the firmware) to consume

 This is roughly similar to environment variable parsing attack
surface on *nix systems

© 2014 The MITRE Corporation. All rights reserved.

| 16 |

Previous EFI Variable Issues (1 of 2)

 We’ve already co-discovered[13] with Intel some vulnerabilities

associated with EFI Variables that allowed bypassing secure

boot and/or bricking the platform

© 2014 The MITRE Corporation. All rights reserved.

| 17 |

Previous EFI Variable Issues (2 of 2)

 However, VU #758382 was leveraging a proprietary Independent
BIOS Vendor (IBV) implementation mistake, it would be more
devastating if an attacker found a variable vulnerability more
generic to UEFI

© 2014 The MITRE Corporation. All rights reserved.

| 18 |

OEMs

(Original

equipment

manufacturers)

UEFI Vulnerability Proliferation

 If an attacker finds a vulnerability in the UEFI "reference

implementation," its proliferation across IBVs and OEMs would

potentially be wide spread.

© 2014 The MITRE Corporation. All rights reserved.

Notional, not literal, representation of

the flow of code between vendors

UEFI

(Unified

Extensible

Firmware

Interface)

IBVs

(Independent

BIOS Vendors)

| 19 |

Auditing UEFI

 UEFI reference implementation is open source, making it easy to audit

 Let the games begin:

– Svn checkout https://svn.code.sf.net/p/edk2/code/trunk/edk2/

http://tianocore.sourceforge.net/wiki/Welcome

© 2014 The MITRE Corporation. All rights reserved.

| 20 |

Where to Start Looking for Problems?

 Always start with wherever there is attacker-controlled input

– Many of the UEFI variables are writeable by the OS, and are thus

“attacker controlled”

 We had good success last year exploiting Dell systems by

passing an specially-crafted fake BIOS update…

 The UEFI spec outlines a "Capsule update" mechanism for

firmware updates

– It’s not directly callable by ring 3 code…

– But it can be initiated by the creation of a special EFI Variable!

– We considered this to be a good target

© 2014 The MITRE Corporation. All rights reserved.

| 21 |

Capsule Scatter Write

 To begin the process of sending a Capsule update for

processing, the operating system takes a firmware capsule and

fragments it across the address space

© 2014 The MITRE Corporation. All rights reserved.

| 22 |

Capsule Processing Initiation

 The operating system creates an EFI variable that describes the
location of the fragmented firmware capsule

 A "warm reset" then occurs to transition control back to the
firmware

© 2014 The MITRE Corporation. All rights reserved.

| 23 |

Capsule Coalescing

 The UEFI code "coalesces" the firmware capsule back into its

original form.
© 2014 The MITRE Corporation. All rights reserved.

| 24 |

Capsule Verification

 UEFI parses the envelope of the firmware capsule and verifies

that it is signed by the OEM

© 2014 The MITRE Corporation. All rights reserved.

| 25 |

Capsule Consumption

 Contents of the capsule are then consumed….

– Flash contents to the SPI flash

– Run malware detection independent of the operating system

– Etc…

© 2014 The MITRE Corporation. All rights reserved.

| 26 |

Opportunities For Vulnerabilities

 There are 3 main opportunities for memory corruption

vulnerabilities in the firmware capsule processing code

1. The coalescing phase

2. Parsing of the capsule envelope

3. Parsing of unsigned content within the capsule

 Our audit of the UEFI capsule processing code yielded multiple

vulnerabilities in the coalescing and envelope parsing code

– The first "BIOS reflash" exploit was presented by Wojtczuk and

Tereshkin. They found it by reading the UEFI code which handled

BMP processing and exploiting an unsigned splash screen image

embedded in a firmware[1]

© 2014 The MITRE Corporation. All rights reserved.

| 27 |

Bugs Galore

 We spent ~1 week looking at the UEFI reference implementation and
discovered vulnerabilities in the capsule processing code

– We found 2 exploitable vulnerabilities code-named after chess moves. King's
Gambit is in DXE phase, Queen's Gambit in PEI phase.

 The vulnerabilities allow an attacker to get code execution in the context of
an almost entirely unlocked platform

 © 2014 The MITRE Corporation. All rights reserved.

| 28 |

Vulnerabilities Summary

 The presence of easy to spot integer overflows in open source

and security critical code is… disturbing

– "Many eyes make all bugs shallow"… so is anyone (defensive)

looking?

ValidateCapsuleIntegrity: Edk2/MdeModulePkg/Universal/CapsulePei/Common/CapsuleCoalesce.c

© 2014 The MITRE Corporation. All rights reserved.

| 29 |

Onward To Exploitation

 The aforementioned code runs with read-write-execute

permissions

– Flat protected mode with paging disabled

– No mitigations whatsoever

 However, successful exploitation in this unusual environment was

non-trivial

© 2014 The MITRE Corporation. All rights reserved.

| 30 |

Coalescing Exploit Success

 Exploited using a multistage approach that involved corrupting

the scatter-gather list

– Achieves surgical write-what-where primitive

See whitepaper for full details on the exploitation technique © 2014 The MITRE Corporation. All rights reserved.

| 31 |

Envelope Exploitation Success

 Memory corruption took the form of a non-terminating loop writing

partially controlled values

 Exploited by having non-terminating loop self-overwrite
© 2014 The MITRE Corporation. All rights reserved. See whitepaper for full details on the exploitation technique

| 32 |

Exploitation Mechanics Summary

 See the whitepaper for the super nitty-gritty details

 Capsule coalescing exploit (Queen's Gambit) allows for surgical
write-what-where primitive resulting in reliable exploitation of
the UEFI firmware

– Exploited using only Windows 8 EFI variable API

– Stores payload at predictable physical addresses by spraying EFI
variables onto the SPI flash

– CVE-2014-4860

 Capsule envelope parsing vulnerability (King's Gambit) can be
exploited but corrupts a lot of the address space

– System possibly left in an unstable state if not rebooted

– Relies on a 3rd party kernel driver to stage payload at a certain
physical address

– CVE-2014-4859

 In both cases, attacker ends up with control of EIP in the early
boot environment

 © 2014 The MITRE Corporation. All rights reserved.

| 33 |

Exploitation Flow (1 of 9)

 Our Sith attacker is unimpressed with his ring 3 admin privileges
and seeks to grow his power through the dark side of the force

© 2014 The MITRE Corporation. All rights reserved.

| 34 |

Exploitation Flow (2 of 9)

 Attacker creates many copies of a payload variable

– Payload contains evil capsule as well as shellcode

 Similar to heap spray, this technique puts the attackers payload at a
predictable physical address

© 2014 The MITRE Corporation. All rights reserved.

| 35 |

Exploitation Flow (3 of 9)

 Attacker prepares to initiate capsule update by creating the

CapsuleUpdateData variable

© 2014 The MITRE Corporation. All rights reserved.

| 36 |

Exploitation Flow (4 of 9)

 Warm reset is performed to transfer context back to UEFI

– “Warm reset” probably means S3 sleep but is implementation specific

© 2014 The MITRE Corporation. All rights reserved.

| 37 |

Exploitation Flow (5 of 9)

 Capsule processing is initiated by the existence of the

"CapsuleUpdateData" UEFI variable
© 2014 The MITRE Corporation. All rights reserved.

| 38 |

Exploitation Flow (6 of 9)

 UEFI begins to coalesce the evil capsule

© 2014 The MITRE Corporation. All rights reserved.

| 39 |

Exploitation Flow (7 of 9)

 UEFI becomes corrupted while parsing evil capsule

© 2014 The MITRE Corporation. All rights reserved.

| 40 |

Exploitation Flow (8 of 9)

 Attacker gains arbitrary code execution in the context of the early
boot environment

– Platform is unlocked at this point

 © 2014 The MITRE Corporation. All rights reserved.

| 41 |

Exploitation Flow (9 of 9)

 Attacker can now establish agents in SMM and/or the platform
firmware to do their bidding

© 2014 The MITRE Corporation. All rights reserved.

| 42 |

Attack Result

© 2014 The MITRE Corporation. All rights reserved.

 What previously required physical access can now be performed

through software-only means.

 However, recovering from this attack would require physical access!

| 43 |

BIOS Attacks: So What?
What Can Attackers Do If They Break Into BIOS?

 We get asked this question a lot, and our answer is

"EVERYTHING! YOU CAN DO EVERY. SINGLE. THING!" or

"A BIOS attacker has available to it a superset of the capabilities

of all lower privileged attackers."

 But of course they can be excused for thinking we’re just

another group of security folks trying to spread FUD.

 We don’t spread FUD, we talk about what we know to be

technologically and architecturally possible.

© 2014 The MITRE Corporation. All rights reserved.

| 44 |

The Power of BIOS

 With these new powers, an attacker can:

– Brick the platform

– Defeat Secure Boot[2]

– Establish an undetectable SMM rootkit[8][5]

– Subvert hypervisors[9]

– Subvert TXT launched hypervisors[3]

– Circumvent operating system security functions[11]

– Survive operating system reinstallation attempts

– Other?

© 2014 The MITRE Corporation. All rights reserved.

| 45 |

© 2014 The MITRE Corporation. All rights reserved.

Presenting
the first
appearance
of
The Watcher!

Marvel Comics
Fantastic Four #13, 1963

| 46 |

The Watcher

 The Watcher lives in SMM (where you can't look for him)

 It has no build-in capability except to scan memory for a magic
signature

 If it finds the signature, it treats the data immediately after the
signature as code to be executed

 In this way the Watcher performs arbitrary code execution on behalf
of some controller, and is completely OS independent

 A controller is responsible for placing into memory payloads for
The Watcher to find

 These payloads can make their way into memory through any
means

– Could be sent in a network packet which is never even processed by
the OS

– Could be embedded somewhere as non-rendering data in a document

– Could be generated on the fly by some malicious javascript that's
pushed out through an advertisement network

– Could be pulled down by a low-privilege normal-looking dropper

– Use your imagination

© 2014 The MITRE Corporation. All rights reserved.

| 47 |

The Watcher, watching

© 2014 The MITRE Corporation. All rights reserved.

0

0x1000

0x2000

0x3000
. . .

RAM

P
e
ri
o
d
ic

 c
o
n
ti
n
u
o
u
s
 p

a
y
lo

a
d

s
ig

n
a
tu

re
 s

e
a
rc

h
 a

ll
R

A
M

0x2F7FE000

Web Page

…

Attached

(non-rendering)

payload

System

Management

RAM (SMRAM)

Design tradeoffs:

We don't want to scan every 4 byte

chunk of memory. So instead we scan

every 0x1000-aligned page boundary.

How do we guarantee a payload will be

found on a page-aligned boundary?

a) Another agent puts it there

b) Controller prefixes the payload with

a full 0x1000 worth of signatures

and pointers to the code to be

executed (this guarantees a

signature will always be found at

the boundary or boundary+4)

There are obviously many different

ways it could be built.

Controller

positions

payload

| 48 |

Vulnerability Disclosure & Vendor Response
http://www.kb.cert.org/vuls/id/552286

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4859

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4860

 We told Intel & CERT about the bugs we found on Nov 22nd

(King's Gambit) and Dec 4th (Queen's Gambit) 2013

– We conveyed that we would extend our typical 6 month

responsible disclosure deadline, and we would be targeting public

disclosure in the summer at BlackHat/Defcon

 MITRE sets a 6 month default deadline to help prioritization to fix the

problems. Things without deadlines have a tendency to not get done.

– We also directly contacted some of the OEMs that we had the

ability to send encrypted email to

 Intel patched the bugs in the UEFI source code in January 2014,

and they are patched in the latest stable UEFI Developers Kit

(UDK) 2014 release (March 2014)

 Intel held multiple meetings with many OEMs and IBVs to

communicate and clarify issues. They also asked the vendors to

report which systems were vulnerable.

© 2014 The MITRE Corporation. All rights reserved.

| 49 |

Vulnerability Disclosure & Vendor Response
http://www.kb.cert.org/vuls/id/552286

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4859

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4860

 Then we didn't hear anything for a while.

 In June we started to get nervous that there was a mismatch in

our expectations about what vendors would be telling us

– We expected to get a list of before BlackHat of which BIOS

revisions vendors had released that patched the vulnerabilities.

– What we got instead was a taste of the bad old days where some

vendors didn't reply Intel, others replied that they're not vulnerable

when they actually are, and others replied under NDA and we don't

know what they said.

 In July we had to start an aggressive follow-up campaign with

OEMs and IBVs where we specifically went and looked at their

systems to try and identify signatures that indicate the presence

of the vulnerable code, so we could cite specific evidence that

they were vulnerable.

© 2014 The MITRE Corporation. All rights reserved.

| 50 |

Current Understanding (1 of 4)

As expected, many members of the ecosystem were

vulnerable

© 2014 The MITRE Corporation. All rights reserved.

| 51 |

Current Understanding (2 of 4)

HP: 33 enterprise and 470 consumer models vulnerable

Dell: 39 enterprise models

 Lenovo: TBD models

© 2014 The MITRE Corporation. All rights reserved.

| 52 |

Current Understanding (3 of 4)

 Insyde – “We didn’t use vulnerable code from reference

implementation”

© 2014 The MITRE Corporation. All rights reserved.

| 53 |

Current Understanding (4 of 4)

Unknown vulnerability status for many OEMs…

© 2014 The MITRE Corporation. All rights reserved.

| 54 |

USRT

 Our experience disclosing these issues revealed that the BIOS eco-system
was not well prepared to handle security vulnerability reports

 The UEFI Forum has started a security response team to remedy the
problem

© 2014 The MITRE Corporation. All rights reserved.

| 55 |

What can you do about it?

 Run Copernicus. It has been updated to automatically report if your

system is on the small list of currently known-affected systems for

CERT VU # 552286 (the CERT VU and Copernicus will be updated

as more vendors acknowledge their vulnerability)

– http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-

blog/copernicus-question-your-assumptions-about or just search for

"MITRE Copernicus"

 We are now releasing our UEFI binary integrity checking script

(bios_diff.py) for use on UEFI BIOS dumps. This can help you

detect if your BIOS has been backdoored

– You can often extract "known good" BIOS dumps from BIOS update

applications. We have a basic collection, but this doesn't scale well.

– We're going to be working with BIOS vendors to get a standard

metadata format whereby they can provide true known good contents

of the flash chips, and what should and shouldn't naturally change

(e.g. where are the UEFI non-volatile variables, etc)

© 2014 The MITRE Corporation. All rights reserved.

http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about

| 56 |

What can you do about it?

 If you're in charge of an enterprise, start running BIOS updates

– And start requesting your asset management software vendor

include BIOS revision and vulnerability status information

 If you're a security vendor, start including BIOS checks

– If you're a customer, start asking for BIOS checks

 We are happy to freely give away our Copernicus code to get

vendors started with incorporating checking BIOSes. All we ask

for in return is some data to help further our research and help

show why BIOS security is so important.

 We want BIOS configuration & integrity checking to become

standard capabilities which are widely available from as many

vendors as possible.

– No more massive blind spot please!

© 2014 The MITRE Corporation. All rights reserved.

© 2014 The MITRE Corporation.
All rights reserved.

The Watcher
Sandman

Queen's

Gambit

King's

Gambit

Charizard

Snorlax

(Coming soon!)

Smite'em the Stealthy

(Coming soon!)

Ticks Fleas

| 58 |

© 2014 The MITRE Corporation. All rights reserved.

http://timeglider.com/timeline/5ca2daa6078caaf4 aka

http://bit.ly/1bvusqn

http://timeglider.com/timeline/5ca2daa6078caaf4
http://bit.ly/1bvusqn
http://bit.ly/1bvusqn
http://bit.ly/1bvusqn

| 59 |

Today’s Presentation Results

 We have found and disclosed two new exploitable vulnerabilities.

 These vulnerabilities would allow an attacker to take control of the
system before any security is enabled, and persist indefinitely via
the SPI flash chip.

 We have also invented a new technique to make BIOS/kernel
exploits more reliable by staging shellcode into UEFI non-volatile
variables, which will be mapped at predictable locations.

 We have shown The Watcher, which is an example of how an
attacker can gain OS-independent arbitrary code execution in the
most privileged x86 execution domain, System Management Mode.

 We have updated our public "Copernicus" software which can
integrity check a BIOS to look for backdoors, or check for the
presence of known vulnerabilities.

© 2014 The MITRE Corporation. All rights reserved.

| 60 |

Conclusions

 It's time to get serious about firmware security

– Start patching your BIOSes

– Start demanding firmware inspection capabilities

 UEFI has more tightly coupled the bonds of the operating system
and the platform firmware

 Specifically, the EFI variable interface acts as a conduit by which a
less privileged entity (the operating system) can pass information
for consumption by a more privileged entity (the platform firmware)

– We have demonstrated how a vulnerability in this interface can allow
an attacker to gain control of the firmware

 Although the authors believe UEFI to ultimately be a good thing for
the overall state of platform security, a more thorough audit of the
UEFI code and OEMs/IBVs' extra "value added" code is needed

 MITRE's Copernicus continues to be updated and remains the only
enterprise-deployable system that can integrity check and
vulnerability check your BIOSes

– But MITRE doesn't make products so industry needs to come talk to
us

© 2014 The MITRE Corporation. All rights reserved.

| 61 |

Questions & Contact

 {ckallenberg, xkovah, jbutterworth, scornwell} @ mitre . org

 Copernicus @ mitre . org

 @coreykal, @xenokovah, @jwbutterworth3, @ssc0rnwell

 @MITREcorp

 P.s., go check out OpenSecurityTraining.info!

 @OpenSecTraining

© 2014 The MITRE Corporation. All rights reserved.

| 62 |

References

 [1] Attacking Intel BIOS – Alexander Tereshkin & Rafal Wojtczuk – Jul. 2009
http://invisiblethingslab.com/resources/bh09usa/Attacking%20Intel%20BIOS.pdf

 [2] A Tale of One Software Bypass of Windows 8 Secure Boot – Yuriy Bulygin –
Jul. 2013 http://blackhat.com/us-13/briefings.html#Bulygin

 [3] Attacking Intel Trusted Execution Technology - Rafal Wojtczuk and Joanna
Rutkowska – Feb. 2009
http://invisiblethingslab.com/resources/bh09dc/Attacking%20Intel%20TXT%20-
%20paper.pdf

 [4] Defeating Signed BIOS Enforcement – Kallenberg et al., Sept. 2013 –
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-
enforcement.pdf

 [5] BIOS Chronomancy: Fixing the Core Root of Trust for Measurement –
Butterworth et al., May 2013
http://www.nosuchcon.org/talks/D2_01_Butterworth_BIOS_Chronomancy.pdf

 [6] IsGameOver() Anyone? – Rutkowska and Tereshkin – Aug 2007
http://invisiblethingslab.com/resources/bh07/IsGameOver.pdf

 [7] Defeating Windows Driver Signature Enforcement – j00ru - Dec 2012
http://j00ru.vexillium.org/?p=1455

© 2014 The MITRE Corporation. All rights reserved.

http://invisiblethingslab.com/resources/bh09usa/Attacking Intel BIOS.pdf
http://invisiblethingslab.com/resources/bh09usa/Attacking Intel BIOS.pdf
http://invisiblethingslab.com/resources/bh09usa/Attacking Intel BIOS.pdf
http://blackhat.com/us-13/briefings.html
http://blackhat.com/us-13/briefings.html
http://blackhat.com/us-13/briefings.html
http://invisiblethingslab.com/resources/bh09dc/Attacking Intel TXT - paper.pdf
http://invisiblethingslab.com/resources/bh09dc/Attacking Intel TXT - paper.pdf
http://invisiblethingslab.com/resources/bh09dc/Attacking Intel TXT - paper.pdf
http://invisiblethingslab.com/resources/bh09dc/Attacking Intel TXT - paper.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.nosuchcon.org/talks/D2_01_Butterworth_BIOS_Chronomancy.pdf
http://invisiblethingslab.com/resources/bh07/IsGameOver.pdf
http://invisiblethingslab.com/resources/bh07/IsGameOver.pdf
http://invisiblethingslab.com/resources/bh07/IsGameOver.pdf
http://j00ru.vexillium.org/?p=1455

| 63 |

References 2

 [8] Copernicus 2 – SENTER The Dragon – Kovah et al. – March 2014

http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-

Dragon-CSW-.pdf

 [9] Preventing and Detecting Xen Hypervisor Subversions – Rutkowska and

Wojtczuk – Aug 2008 http://www.invisiblethingslab.com/resources/bh08/part2-

full.pdf

 [10] A New Breed of Rootkit: The Systems Management Mode (SMM) Rootkit –

Sparks and Embleton – Aug 2008 http://www.eecs.ucf.edu/~czou/research/SMM-

Rootkits-Securecom08.pdf

 [11] Using SMM for "Other Purposes" – BSDaemon et al – March 2008

http://phrack.org/issues/65/7.html

 [12] Using SMM to Circumvent Operating System Security Functions – Duflot et

al. – March 2006 http://fawlty.cs.usfca.edu/~cruse/cs630f06/duflot.pdf

 [13] Setup for Failure: Defeating UEFI SecureBoot – Kallenberg et al. – April 2014

http://www.syscan.org/index.php/download/get/6e597f6067493dd581eed737146f

3afb/SyScan2014_CoreyKallenberg_SetupforFailureDefeatingSecureBoot.zip

© 2014 The MITRE Corporation. All rights reserved.

http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://phrack.org/issues/65/7.html
http://phrack.org/issues/65/7.html
http://fawlty.cs.usfca.edu/~cruse/cs630f06/duflot.pdf
http://fawlty.cs.usfca.edu/~cruse/cs630f06/duflot.pdf
http://www.syscan.org/index.php/download/get/6e597f6067493dd581eed737146f3afb/SyScan2014_CoreyKallenberg_SetupforFailureDefeatingSecureBoot.zip
http://www.syscan.org/index.php/download/get/6e597f6067493dd581eed737146f3afb/SyScan2014_CoreyKallenberg_SetupforFailureDefeatingSecureBoot.zip
http://www.syscan.org/index.php/download/get/6e597f6067493dd581eed737146f3afb/SyScan2014_CoreyKallenberg_SetupforFailureDefeatingSecureBoot.zip

