Extreme Privilege Escalation
on Windows 8/UEFI Systems

Corey Kallenberg @coreykal

Xeno Kovah @xenokovah
John Butterworth @jwbutterworth3
Sam Cornwell @sscOrnwell

MITRE

© 2014 The MITRE Corporation. All rights reserved.
Approved for Public Release,14-2221

Focused Presentation Goals

= Offensive people:
—Highlight an attack surface worth exploring
—Describe a versatile rootkit proof of concept
" Defensive people:
—Highlight an attacker vector to be aware of
—Provide tools and insight to help you

© 2014 The MITRE Corporation. All rights reserve

d.

Attack Model (1 of 2)

Adminis'r-u br: C:\Windows' system i md.exe "'

Microsofglelindows [Uersion -6hAA2 1
Copypr 1g| ‘c:} 2806 Microsof¥ l.u'pur-atiun. A1l 115‘.‘ reserved.

G:Hl-!indcl‘ system32 >vhoami ‘ ‘

nt au.thu' y~sustem
= An attacker has gained administrator access on a victim
Windows 8 machine

= But they are still constrained by the limits of ring 3

» ~ MITRE
© 2014 The MITRE Corporation. All rights r ed.

Attack Model (2 of 2)

= Attackers always want
— More Power
— More Persistence
— More Stealth

ITR

© 2014 The MITRE Corporation. All rights reserved.

Typical Post-Exploitation Privilege Escalation

Ring 0

Admin Ring 3

= Starting with x64 Windows vista, kernel drivers must be signed and contain
an Authenticode certificate

= |n atypical post-exploitation privilege escalation, the attacker wants to
bypass the signed driver requirement to install a kernel level rootkit

= Various methods to achieve this are possible, including:
— Exploit existing kernel drivers
— Install a legitimate (signed), but vulnerable, driver and exploit it

= This style of privilege escalation has been well explored by other
researchers such as [6][7].

= There are other, more extreme, lands the attacker may wish to explore

© 2014 The MITRE Corporation. All rights reserved.

Other Escalation Options (1 of 2)

Platform
Firmware (UEFI)

SMM

Boot Loader
(MBR)

Ring 0

Admin Ring 3

" There are other more interesting post-exploitation options an
attacker may consider:

— Bootkit the system
— Install SMM rootkit
— Install BIOS rootkit

© 2014 The MITRE Corporation. All rights reserved.

Other Escalation Options (2 of 2)

Signed BIOS Enforcement

Platform
Firmware (UEFI)

SMM

Boot Loader

(MBR) Chipset Protection

Ring0

Secure Boot
Admin Ring 3

" Modern platforms contain protections against these more exotic
post-exploitation privilege-escalations

— Bootkit the system (Prevented by Secure Boot)
— Install SMM rootkit (SMM is locked on modern systems)
— Install BIOS rootkit (SPI Flash protected by lockdown mechanisms)

© 2014 The MITRE Corporation. All rights reserved.

Extreme Privilege Escalation (1 of 2)

Platform
Firmware (UEFI)

SMM

Boot Loader
(MBR)

Ring 0

Admin Ring 3

= This talk presents extreme privilege escalation

— Administrator userland process exploits the platform firmware
(UEFI)

— Exploit achieved by means of a new API introduced in Windows 8
© 2014 The MITRE Corpor tM-!-htRE ed.

Extreme Privilege Escalation (2 of 2)

Platform
Firmware (UEFI)

SMM

Boot Loader
(MBR)

Ring 0

Admin Ring 3

" Once the attacker has arbitrary code execution in the context of the
platform firmware, he is able to:

— Control other "rings" on the platform (SMM, Ring 0)
— Persist beyond operating system re-installations
— Permanently "brick" the victim computer

© 2014 The MITRE Corporation. All rights reserved.

10

Target Of Attack

= Modern Windows 8 systems ship with UEFI firmware

= UEFI is designed to replace conventional BIOS and provides a
well defined interface to the operating system

© 2014 The MITRE Corporation. All rights reserved.

11

UEFI Purpose

Pre Interface
: 0S-Absent
Verifier > App
«f 0
Transient 0%
Environment

0

Transient 0%
Boot Loader

ISrLtrir_lsic Final 0OS
rvices Boot Loader Environment

security
Security Pre EFI Driver Boot Transient Run Time After
(SEC) |Initialization Execution Dev System Load (RT) Life
(PEI) Environment Select (TSL) (AL)
(DXE) (BDS)
Power on — [. . Platform initialization . .]————[.... OS boot....] * Shutdown

= Initialize hardware
— Configure and lock security relevant parts of the hardware

" Find and transfer control to OS

© 2014 The MITRE Corporation. All rights reserved.

Attacking UEFI

Pre
Verifier

Intrinsic

0S-Absent
App

0

Transient 0%
Environment

0

Transient 0%
Boot Loader

Final OS

*.

12

Services Boot Loader Environment
security Y,
Security Pre EFI Driver Boot Transient Run Time After
(SEC) |Initialization Execution Dev System Load (RT) Life
(PEI) Environment Select (TSL) (AL)
(DXE) (BDS)
Power on — [. . Platform initialization . .]————[.... OS boot....] * Shutdown

© 2014 The MITRE Corporation. All rights reserved.

13

Windows 8 API

SetFirmwareEnvironmentVariable
function

Sets the value of the specified firmware environment variable.

Syntax

r C++

BOOL WINAPI SetFirmwareEnvironmentVariable(
In LPCTSTR lpName,
In LPCTSTR lpGuid,
In PVOID pBuffer,
In DWORD nSize

);

= Windows 8 has introduced an API that allows a privileged
userland process to interface with a subset of the UEFI interface

© 2014 The MITRE Corporation. All rights reserved.

14

EFI Variable Creation Flow

SPI Flash

am Windows 8

= Certain EFI variables can be created/modified/deleted by the
operating system

— For example, variables that control the boot order and platform
language

" The firmware can also use EFI variables to communicate
information to the operating system

© 2014 The MITRE Corporation. All rights reserved.

15

EFI Variable Consumption

SPI Flash

Non Volatile Variables
UEFI Code

am Windows 8

" The UEFI variable interface is a conduit by which a less privileged
entity (admin Ring 3) can produce data for a more complicated
entity (the firmware) to consume

" This is roughly similar to environment variable parsing attack
surface on *nix systems

© 2014 The MITRE Corporation. All rights reserved.

16

Previous EFI Variable Issues (1 of 2)

Vulnerability Note VU#758382
Unauthorized modification of UEFI variables in UEFI systems

Original Release date: 09 Jun 2014 | Last revised: 19 Jun 2014

& Print a Tweet K] send Share

Overview

Certain firmware implementations may not correctly protect and validate information contained in certain UEF] variables.
Exploitation of such vulnerabilities could potentially lead to bypass of security features and/or denial of service for the
platfarm.

Description

As discussed in recent conference publications (CanSecWest 2014, Syscan 2014, and Hack-in-the-Box 2014) certain
LEFI implementations do not correctly protect and validate information contained in the "Setup” UEF! variable. On some
systems, this variable can be overwritten using operating system APls. Exploitation of this vulnerability could potentially
lead to bypass of security features, such as secure boot, and/or denial of service for the platform. Please refer to the
conference publications for further details.

Impact

Allocal attacker that obtains administrator access to the operating system may be able to modify LUEF| variables.
Exploitation of such vulnerabilities could potentially lead to bypass of security features and/or denial of service for the
platform.

= We’ve already co-discovered[13] with Intel some vulnerabilities
associated with EFI Variables that allowed bypassing secure
boot and/or bricking the platform

© 2014 The MITRE Corporation. All rights reserved.

17

Previous EFI Variable Issues (2 of 2)

Vulnerability Note VU#758382
Unauthorized modification of UEFI variables in UEFI systems

Felegse date g M 14 F=t revised 1 i 14

Lrigdinal Release dale. Ua JUun U004 | Last revised: 14 JUn U4

& Print a Tweet K] send Share

Overview

Certain firmware implementations may not correctly protect and validate information contained in certain UEF] variables.
Exploitation of such vulnerabilities could potentially lead to bypass of security features and/or denial of service for the
platfarm.

Description

As discussed in recent conference publications (CanSecWest 2014, Syscan 2014, and Hack-in-the-Box 2014) certain
LEFI implementations do not correctly protect and validate information contained in the "Setup” UEF! variable. On some
systems, this variable can be overwritten using operating system APls. Exploitation of this vulnerability could potentially
lead to bypass of security features, such as secure boot, and/or denial of service for the platform. Please refer to the
conference publications for further details.

Impact

Allocal attacker that obtains administrator access to the operating system may be able to modify LUEF| variables.
Exploitation of such vulnerabilities could potentially lead to bypass of security features and/or denial of service for the
platform.

= However, VU #758382 was leveraging a proprietary Independent
BIOS Vendor (IBV) implementation mistake, it would be more
devastating if an attacker found a variable vulnerability more
generic to UEFI

© 2014 The MITRE Corporation. All rights reserved.

18

UEFI Vulnerability Proliferation

|
UEFI) . .

- ” Notional, not literal, representation of
(Unified the flow of code between vendors
Extensible
Firmware

Interface)

— Z 3 \\
IBVs ‘ . .)
i A e l o)) GiNsyde

OEMs

(Original ML P p—
equipment @ isus lenovo. aCer

manufacturers)

= If an attacker finds a vulnerability in the UEFI "reference
Implementation," its proliferation across IBVs and OEMs would
potentially be wide spread.

© 2014 The MITRE Corporation. All rights reserved.

19

Auditing UEF!

* Page Discussion Read View source

Welcome
ubK2014 UEEI.Devqupment Kit 2014 (UDK2014)
2% 'y 2 e o Continuing with the
EFI Dev Kit (EDK) A P i UEFI Open Source Community
EDK Il Build Taols i B N
All Projects

* Information

D BT This is the community site surrounding the open source components of Intel's implementation of UEFL. To learn how to use UEFI see our start using UEFI page.

Getting Started To learn more about getting involved in the community see our how to contribute page. EDK IT is @ modern, feature-rich, cross-platform firmware development environment for the UEFI and PI sp
FAQ, Acronyms
Documem; If you have any comments for this site please see the Community_Admins page.
Training For the full list of our community projects, visit the Projects page.
Reporting Issues
Legalese
New Announcements
¥ Mavigation
» Tools March 20, 2014

Announcing the new UDK2014 Release. Goto the UDK2014 page to download the release and documentation. The UDK2014 release will deliver the UEFI 2.4 and PI 1.3 support. Specific details on
the UDK2014 Release Notes .

Feb 11, 2014

Upcomming soon UDK2014 See a sneak pre-view: UDK2014 Features

Archived News News from 2009-2013

http://tianocore.sourceforge.net/wiki/Welcome

= UEFI reference implementation is open source, making it easy to audit
= Let the games begin:

— Svn checkout https://svn.code.sf.net/p/edk2/code/trunk/edk2/

© 2014 The MITRE Corporation. All rights reserved.

20

Where to Start Looking for Problems?

= Always start with wherever there is attacker-controlled input

— Many of the UEFI variables are writeable by the OS, and are thus
“attacker controlled”

= We had good success last year exploiting Dell systems by
passing an specially-crafted fake BIOS update...

" The UEFI spec outlines a "Capsule update" mechanism for
firmware updates

— It's not directly callable by ring 3 code...

— But it can be initiated by the creation of a special EFI Variable!
— We considered this to be a good target

MITRE
© 2014 The MITRE Corporation. All rights 1 ed.

21

Capsule Scatter Write

Firmware Capsule

FFFFFFFF ~ ~

CAPSULE_HEADER Operating System

FIRMWARE_VOLUME_HEADER
FIRMWARE_FILE

FIRMWARE_FILE ~ Capsule Data Block 1

' Capsule Data Block O

Capsule Data Block N-1

00000000 _ 4

" To begin the process of sending a Capsule update for
processing, the operating system takes a firmware capsule and
fragments it across the address space

© 2014 The MITRE Corporation. All rights reserved.

22

Capsule Processing Initiation

FEFFFFFF [I
3F000000 Capsule Data Block 0
“CapsuleUpdateData” = 3E700000 % 3E700000 DescriptorArray (BlockList) DescriptorArray[0]
Length=0x20000
DataBlock=3F000000
3E000000 Capsule Data Block N-1 DescriptorArray[1]
Length=0x20000
SetFirmwareEnvironmentVariable DataBlock=3D000000
3D000000 Capsule Data Block 1
DescriptorArray[N-1]
Length=0x100
00000000 \ / DataBlock=3E000000

" The operating system creates an EFl variable that describes the
location of the fragmented firmware capsule

= A"warm reset" then occurs to transition control back to the
firmware

© 2014 The MITRE Corporation. All rights reserved.

Capsule Coalescing

FFFFFFFF

3F000000

3E000000

3D000000

CAPSULE_HEADER

FIRMWARE_VOLUME_HEADER

FIRMWARE_FILE

FIRMWARE_FILE

00000000

Capsule Data Block 0

DescriptorArray (BlockList)

Capsule Data Block N-1

Capsule Data Block 1

Capsule Data Block 0

Capsule Data Block 1

Capsule Data Block N-1

=

/

23

SPI Flash

"= The UEFI code "coalesces" the firmware capsule back into its

original form.

© 2014 The MITRE Corporation. All rights reserved.

24

Capsule Verification

FFFFFFFF
}“ SPI Flash

Signature Check

CAPSULE_HEADER

FIRMWARE_VOLUME_HEADER

FIRMWARE_FILE

FIRMWARE_FILE

00000000 \ /

= UEFI parses the envelope of the firmware capsule and verifies
that it is signed by the OEM

© 2014 The MITRE Corporation. All rights reserved.

Capsule Consumption

FFFFFFFF

Consume Capsule

00000000

CAPSULE_HEADER

FIRMWARE_VOLUME_HEADER

FIRMWARE_FILE

\

= Contents of the capsule are then consumed....

— Flash contents to the SPI flash

25

}Q SPI Flash

— Run malware detection independent of the operating system

— Etc...

© 2014 The MITRE Corporation. All rights reserved.

26

Opportunities For Vulnerabilities

" There are 3 main opportunities for memory corruption
vulnerabilities in the firmware capsule processing code

1. The coalescing phase
2. Parsing of the capsule envelope
3. Parsing of unsigned content within the capsule

= Qur audit of the UEFI capsule processing code yielded multiple
vulnerabilities in the coalescing and envelope parsing code

— The first "BIOS reflash" exploit was presented by Wojtczuk and
Tereshkin. They found it by reading the UEFI code which handled

BMP processing and exploiting an unsigned splash screen image
embedded in a firmware[1]

ITR

© 2014 The MITRE Corporation. All rights reserved.

27

Bugs Galore

if (#MemorySize <= (CapsuleSize + DescriptorsSize)) { <= Bug 1
return EFI_BUFFER_TO0O0_SMALL;
}
/7
Desc = (EFI_CAPSULE_BLOCK_DESCRIPTOR *
} else {
Size += (UINTN) Desc->Length; <= Bug 2
Count++;

‘LbaCache = AllocatePool (FvbDev->NumBlocks * sizeof (LBA_CACHE)); <= Bug 3

ClEd

if (((Buffl + Sizel) <= Buff2) || (Buffl >= (Buff2 + Size2))) { <= Bug 4
return FALSE;
].

" We spent ~1 week looking at the UEFI reference implementation and
discovered vulnerabilities in the capsule processing code

— We found 2 exploitable vulnerabilities code-named after chess moves. King's
Gambit is in DXE phase, Queen's Gambit in PEI phase.

= The vulnerabilities allow an attacker to get code execution in the context of
an almost entirely unlocked platform

© 2014 The MITRE Corporation. All rights reserved.

28

Vulnerabilities Summary

T else {
!/
//To enhance the reliability of check-up, the first capsule’'s header is checked here.
//More reliabilities check-up will do later.
1T (CapsuleS1ze == ©)

!

//Move to the first capsule to check its header.

!/

CapsuleHeader = (EFI_CAPSULE_HEADER*)((UINTN)}Ptr->Union.DataBlock);

if (IsCapsuleCorrupted (CapsuleHeader)) {

return NULL;

¥

CapsuleCount ++;

CapsuleSize = CapsuleHeader->CapsuleImageSize;

ValidateCapsulelntegrity: Edk2/MdeModulePkg/Universal/CapsulePei/Common/CapsuleCoalesce.c

" The presence of easy to spot integer overflows in open source
and security critical code is... disturbing

— "Many eyes make all bugs shallow"... so is anyone (defensive)
looking?

© 2014 The MITRE Corporation. All rights reserved.

29

Onward To Exploitation

" The aforementioned code runs with read-write-execute
permissions

— Flat protected mode with paging disabled
— No mitigations whatsoever

= However, successful exploitation in this unusual environment was
non-trivial

© 2014 The MITRE Corporation. All rights reserved.

30

Coalescing Exploit Success

FFFFFFFF

Overwrite function pointer

,

ReturnAddress — DestPtr Two

Adjust Next DestPtr Shellcode Address

Intended Coalescing Space Corrupt DescriptorArray

Relocated DescriptorArray

00000000 \\‘ J

= Exploited using a multistage approach that involved corrupting
the scatter-gather list

— Achieves surgical write-what-where primitive

See whitepaper for full details on the exploitation technique © 2014 The MITRE CorporaﬁOM rights reserved.

31

Envelope Exploitation Success

We are now
corrupting the loop

FFFFFFFF code itself..
O O
3EBE1E44 e AttackerValue = 2D98CBF.
e Overwrites top of loop code on iteration=BB
e *(DWORD *)3EB21E42 = (AttackerValue * 0xBB) % 0x100000000
= 14E9CF8F
= 85 CF E9 14 [endianness]
¢ *(DWORD *)3EB21E46 = BF 8C D9 02 [endianness]
%4
3EB18E78 loc_3EB21E44:
E9 14 BF 8C D9 jmp 183EDD5Dh
2D 5E 3@ mov ebx, [esi+EFI_FW_VOL_BLOCK_DEVICE.lLbaCache]
C1l E1 @3 shl ecx, 3
89 14 19 mov [ecx+ebx+LBA_CACHE.Base], edx ; *(DWORD *)3EB21E42 = AttackerValue*i
8B 56 3@ mov edx, [esi+EFI_FW_VOL_BLOCK_DEVICE.LbaCache]
3DE1A910 FvbDev 8B 58 04 mov ebx, [eax+LBA CACHE.Length]
89 5C @A 94 mov [edx+ecx+LBA_CACHE.Length], ebx ; *(DWORD *)3EB21E46 = AttackerValue
8B 55 F4 mov edx, [ebp+vLinearOffset]
3DE1A890 FvbDev->LbaCache @3 50 04 add edx, [eax+4]
FF 45 FC inc [ebp+vBlockIndex]
FF 45 F8 inc [ebp+vBlockIndex2]
183EDD5SD Shellcode 8B 4D F8 mov ecx, [ebp+vBlockIndex2]
ke 89 55 F4 mov [ebpt+vLinearOffset], edx
3B @8 cmp ecx, [eax]
72 D4 jb short loc_3EB21E44
00000000

= Memory corruption took the form of a non-terminating loop writing
partially controlled values

= Exploited by having non-terminating loop self-overwrite

See whitepaper for full details on the exploitation technique © 2014 The MITRE CorporaﬁoM rights reserved.

32

Exploitation Mechanics Summary

= See the whitepaper for the super nitty-gritty details

= Capsule coalescing exploit (Queen's Gambit) allows for surgical
write-what-where primitive resulting in reliable exploitation of
the UEFI firmware

— Exploited using only Windows 8 EFI variable API

— Stores payload at predictable physical addresses by spraying EFI
variables onto the SPI flash

— CVE-2014-4860

= Capsule envelope parsing vulnerability (King's Gambit) can be
exploited but corrupts a lot of the address space

— System possibly left in an unstable state if not rebooted

— Relies on a 3 party kernel driver to stage payload at a certain
physical address

— CVE-2014-4859

" In both cases, attacker ends up with control of EIP in the early

boot environment
ITR

© 2014 The MITRE Corporation. A

rights reserved.

33

Exploitation Flow (1 of 9)

FFFFFFFF [N

I’'m not satisfied by the
limits of Ring3, | must
grow my power

Address Space

00000000 \ /

nt au

= Qur Sith attacker is unimpressed with his ring 3 admin privileges
and seeks to grow his power through the dark side of the force

© 2014 The MITRE Corporation. All rights reserved.

34

Exploitation Flow (2 of 9)

FEFFFFFF [)
“Payload1” = payload Payload } Evil Descriptor Array
: FFF92000
: : Payload :
~ “Payload2” = payload)—» FEF91000 Y Shellcode
’ Payload
| ”PEV'QGdZ" = payloa:d # FFF90000

2.

SetFirmwareEnvironmentVariable

00000000 k /

= Attacker creates many copies of a payload variable
— Payload contains evil capsule as well as shellcode

= Similar to heap spray, this technique puts the attackers payload at a
predictable physical address

© 2014 The MITRE Corporation. All rights reserved.

35

Exploitation Flow (3 of 9)

FEFFFFFF [N
CapsuleUpdateData
Payload
FFF92000
Payload
FFF91000
Payload
FFF90000
SetFirmwareEnvironmentVariable
00000000 \ /

= Attacker prepares to initiate capsule update by creating the
CapsuleUpdateData variable

© 2014 The MITRE Corporation. All rights reserved.

36

Exploitation Flow (4 of 9)

FFFFFFFF Y

00000000 /

= Warm reset is performed to transfer context back to UEFI
— “Warm reset” probably means S3 sleep but is implementation specific

© 2014 The MITRE Corporation. All rights reserved.

37

Exploitation Flow (5 of 9)

UEFI Checks for Capsule Variable

FFFFFFFF
CapsuleUpdateData
Payload
FFF92000
Payload
FFF91000
Payload
FFFO0000
00000000 \ /

= Capsule processing is initiated by the existence of the
"CapsuleUpdateData" UEFI variable

© 2014 The MITRE Corporation. All rights reserved.

Exploitation Flow (6 of 9)

Parsing Descriptor Array

FFFFFFFF

FFR2000

FFF9100

FFF90000

00000000

CapsuleUpdateData

Payload

Payload

Payload

-

= UEFI begins to coalesce the evil capsule

38

© 2014 The MITRE Corporation. All rights reserved.

Exploitation Flow (7 of 9)

Parsing Descriptor Array

FFFFFFFF

FFRA2000

FFF9100

FFF90000

00000000

CapsuleUpdateData

Payload

Payload

Payload

o

/

39

= UEFI becomes corrupted while parsing evil capsule

© 2014 The MITRE Corporation. All rights reserved.

40

Exploitation Flow (8 of 9)

EIP=Payload

FFFFFFFF

CapsuleUpdateData

Payload

FFR§2000
Payload

FFF9100
Payload

FFF90000

00000000 \ /

= Attacker gains arbitrary code execution in the context of the early
boot environment

— Platform is unlocked at this point

© 2014 The MITRE Corporation. All rights reserved.

41

Exploitation Flow (9 of 9)

CapsuleUpdateData
5
Payload Q’.b
FFF92000 Q@’
Payload
FFF
Payload

FFF90000

Establish SMM Agent

00000000 \ /

= Attacker can now establish agents in SMM and/or the platform
firmware to do their bidding

© 2014 The MITRE Corporation. All rights reserved.

42

Attack Result

= What previously required physical access can now be performed
through software-only means.

= However, recovering from this attack would require physical access!

© 2014 The MITRE Corporation. All rights reserved.

43

BIOS Attacks: So What?
What Can Attackers Do If They Break Into BIOS?

= We get asked this question a lot, and our answer is
"EVERYTHING! YOU CAN DO EVERY. SINGLE. THING!" or
"A BIOS attacker has available to it a superset of the capabilities
of all lower privileged attackers."

= But of course they can be excused for thinking we’re just
another group of security folks trying to spread FUD.

= We don’t spread FUD, we talk about what we know to be
technologically and architecturally possible.

ITR

© 2014 The MITRE Corporation. All rights reserved.

44

The Power of BIOS

= With these new powers, an attacker can:
— Brick the platform
— Defeat Secure Boot[2]
— Establish an undetectable SMM rootkit[8][5]
— Subvert hypervisors[9]
— Subvert TXT launched hypervisors|3]
— Circumvent operating system security functions[11]
— Survive operating system reinstallation attempts
— Other?

o MITRE |
14 The MITRE Corporation. All rights ed.

CEASE THIS 6
USELESS CONFLICT/

FOR
CRYIN' oUT
LOUD! WHAT'S
GOIN' ON HERE 2/
HOW'D THE APES
GET INTO THOSE

FLOATING GLOBES??

AND WHO~~WHO
IS THATZ®

RTINS A

UDDENLY, BEFORE THE THING CAN MAKE ANOTHER
VE, THE THREE APES ARE WHISKED AWAY FROM HiM
BY AN INVISIBLE FORCE, AND PLACED INTO UNBREAKABLE

GLOBULES OF SHIMMERING
SYNTHO-MATTER. AND THEN
A STRANGE, RICH VOICE RINGS

Marvel Comics

- Fantastic Four #13, 1963 45

Presenting
‘the first
‘appearance
of
ne Watcher!

© 2014 The MITRE Corporation. All rights reserved.

46

The Watcher

" The Watcher lives in SMM (where you can't look for him)

" It has no build-in capability except to scan memory for a magic
signature

= If it finds the signature, it treats the data immediately after the
sighature as code to be executed

" |n this way the Watcher performs arbitrary code execution on behalf
of some controller, and is completely OS independent

= A controller is responsible for placing into memory payloads for
The Watcher to find

" These payloads can make their way into memory through any
means

— Could be sent in a network packet which is never even processed by
the OS

— Could be embedded somewhere as non-rendering data in a document

— Could be generated on the fly by some malicious javascript that's
pushed out through an advertisement network

— Could be pulled down by a low-privilege normal-looking dropper
— Use your imagination

© 2014 The MITRE Corporation. All rights reserved.

47

The Watcher, watching

RAM

0
0x1000

0x2000
0x3000

Design tradeoffs:

We don't want to scan every 4 byte
chunk of memory. So instead we scan
every 0x1000-aligned page boundary.

How do we guarantee a payload will be Ox2F7FEOQO

found on a page-aligned boundary? Web Page

a) Another agent puts it there Attéi:.he q
(non-rendering)

payload

b) Controller prefixes the payload with
a full 0x1000 worth of signatures
and pointers to the code to be
executed (this guarantees a
signature will always be found at

Periodic continuous payload
signature search all RAM

the boundary or boundary+4) 3 Controller
= System positions
Management payload

There are obviously many different RAM (SMRAM)
ways it could be built.

© 2014 The MITRE Corporation. All rights reserved.

8

Vulnerability Disclosure & Vendor Response

http://lwww.kb.cert.org/vuls/id/552286
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4859
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4860

= We told Intel & CERT about the bugs we found on Nov 22nd
(King's Gambit) and Dec 4™ (Queen's Gambit) 2013

— We conveyed that we would extend our typical 6 month
responsible disclosure deadline, and we would be targeting public
disclosure in the summer at BlackHat/Defcon

= MITRE sets a 6 month default deadline to help prioritization to fix the
problems. Things without deadlines have a tendency to not get done.

— We also directly contacted some of the OEMs that we had the
ability to send encrypted email to

= Intel patched the bugs in the UEFI source code in January 2014,
and they are patched in the latest stable UEFI Developers Kit
(UDK) 2014 release (March 2014)

= Intel held multiple meetings with many OEMs and IBVs to
communicate and clarify issues. They also asked the vendors to
report which systems were vulnerable.

© 2014 The MITRE Corporation. All rights reserved.

49

Vulnerability Disclosure & Vendor Response

http://lwww.kb.cert.org/vuls/id/552286
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4859
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-4860

" Then we didn't hear anything for a while.

" In June we started to get nervous that there was a mismatch in
our expectations about what vendors would be telling us

— We expected to get a list of before BlackHat of which BIOS
revisions vendors had released that patched the vulnerabilities.

— What we got instead was a taste of the bad old days where some
vendors didn't reply Intel, others replied that they're not vulnerable

when they actually are, and others replied under NDA and we don't
know what they said.

= In July we had to start an aggressive follow-up campaign with
OEMs and IBVs where we specifically went and looked at their
systems to try and identify signatures that indicate the presence
of the vulnerable code, so we could cite specific evidence that
they were vulnerable.

© 2014 The MITRE Corporation. All rights reserved.

50

Current Understanding (1 of 4)

€insyde

lenovo. aCEer

= As expected, many members of the ecosystem were
vulnerable

© 2014 The MITRE Corporation. All rights reserve d.

51

Current Understanding (2 of 4)

= American
=== Megatrends

phoﬁ@)’ @insyde”

lenovo. aCEer

= HP: 33 enterprise and 470 consumer models vulnerable
= Dell: 39 enterprise models
" Lenovo: TBD models

© 2014 The MITRE Corporation. All rights reserve d.

52

Current Understanding (3 of 4)
¥
A0n phosnix)) @sy)

DL () r== ftenowo

" Insyde — “We didn’t use vulnerable code from reference
implementation”

© 2014 The MITRE C MITRE
orporation . All'rights reserve d.

53

Current Understanding (4 of 4)
&G
A o) @INSyde’

DAL () (r=s) tenove (acer

" Unknown vulnerability status for many OEMs...

© 2014 The MITRE Corporation. All rights reserved.

54

USRT

/ Member Pag
Unified Extensible Firmware Interface Forum

Home » About
REPORTING A SECURITY ISSUE

If you have information about a security issue or vulnerability with a product that may be due to its UEFI-based firmware, please send an e-mail to
security@uefi.org. Encrypt sensitive information using our PGP public key.

Please provide as much information as possible, including:

The products and versions affected
Detailed description of the vulnerability

+ Steps to demonstrate the vulnerability or reproduce the exploit, including specific configurations or peripherals, if relevant
» Potential impact of the vulnerability, when exploited
= Information on known exploits

= Qur experience disclosing these issues revealed that the BIOS eco-system
was not well prepared to handle security vulnerability reports

= The UEFI Forum has started a security response team to remedy the
problem

© 2014 The MITRE Corporation. All rights reserved.

55

What can you do about it?

= Run Copernicus. It has been updated to automatically report if your
system is on the small list of currently known-affected systems for
CERT VU # 552286 (the CERT VU and Copernicus will be updated
as more vendors acknowledge their vulnerability)

— http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-
blog/copernicus-guestion-your-assumptions-about or just search for
"MITRE Copernicus"

= We are now releasing our UEFI binary integrity checking script
(bios_diff.py) for use on UEFI BIOS dumps. This can help you
detect if your BIOS has been backdoored

— You can often extract "known good" BIOS dumps from BIOS update
applications. We have a basic collection, but this doesn't scale well.

— We're going to be working with BIOS vendors to get a standard
metadata format whereby they can provide true known good contents
of the flash chips, and what should and shouldn't naturally change
(e.g. where are the UEFI non-volatile variables, etc)

© 2014 The MITRE Corporation. All rights reserved.

http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about
http://www.mitre.org/capabilities/cybersecurity/overview/cybersecurity-blog/copernicus-question-your-assumptions-about

56

What can you do about it?

= If you're in charge of an enterprise, start running BIOS updates

— And start requesting your asset management software vendor
Include BIOS revision and vulnerability status information

= If you're a security vendor, start including BIOS checks
— If you're a customer, start asking for BIOS checks

= We are happy to freely give away our Copernicus code to get
vendors started with incorporating checking BIOSes. All we ask
for in return is some data to help further our research and help
show why BIOS security is so important.

= We want BIOS configuration & integrity checking to become
standard capabilities which are widely available from as many
vendors as possible.

— No more massive blind spot please!

ITR

© 2014 The MITRE Corporation. All rights reserved.

C g{uinc’
) comros 100

S M Sandman
[. WAALUL §

The Watcher

nuy cLorez

The inside story on @ popular and rich opening compiex

the S]Clllan

Smite'em the Stealthy Snorlax

g 74
.«//

// —s,, =
/.;

‘4.....
_ o~

(Coming soon!)

Charizard

Queen’s King's

. - oo,
Gambit Gambit © 2014 The MITRE Corporation

All rights reserved.

» Apple/SMC/KBC/EC/Firmware: Ninjas and Harry Potter: "Spell"unking in Apple SMC Land
ogy » Bootkit/UEFI: Dreamboot: A UEFI Bootkit
» Apple/SMC/KBC/EC/Firmware: Practical Exploitation of Embedded Systems
'12C: Battery Firmware Hacking: Inside the innards of a Smart Battery » Apple/SMC/KBC/EC/Firmware: Apple SMC, The place to
\erabilities » AMT/ME/BIOS/Firmware: Rootkit in your laptop ® Analytics, and Scalability, and UEFI exploitation! Oh My!
e firmware integrity verification: what if you can't trust your network card? ™ BIOS/UEFI/Firmware/SecureBoot: A Summary of Attac
» Apple/UEFI/BIOS/0ptROM/Firmware: DE MYSTERIIS DOM JOBSIVS Mac EFI Rootkits
» AMT/ME/DMA: Understanding DMA Malware » BIOS/Firmware/SecureBoot: All Your Boot Are Belong To Us
» FDE/TPM/BIOS/Firmware: Evil Maid Just Got Angrier: Why Full-Disk Encryption With TPM is
(T/ACP!I: Attacking Intel TXT via SINIT code execution hijacking ® AMT/ME/Firmware/BIOS: Intel ME Secrets
 Backdooring Embedded Controllers » BIOS/UEFI/Firmware/SecureBoot: A Tale of one Software Bypass of Windows &
» BI0OS/SMM/Firmware/TPM: BIOS Chronomancy: Fixing the Core Root ¢
rse engineering the Broadcom NetExtreme's Firmware » BIOS/Firmware/SMM/SMX/TXT: Copemicus 2: SENTE
ity P ACPI: ACPI 5.0 Rootkit Attacks "Against” Windows8 ™ BIOS/Firmware/SecureBoot/Bootkit: Setup for Failun
e Rabbit: Software attacks against Intel(R) VT-d technology » BIOS/UEFI/Firmware/SMX/TXT: SENTER Sandm
3C/EC: Sticky Fingers & KBC Custom Shop » BIOS/UEFI/Firmware/SecureBoot: Extreme |

» BIOS/SMM/Firmware: Defeating Signed BIOS Enforcement
http://timeqglider.com/timeline/5ca2daa6078caaf4 aka

) Boot

12 ' :2013 |2014 2015 2016
[Fim|a . ml: it lasloe'vinande!w Am|s [J]|a|s|o|n|D's [F M[A|m|s |3 |a|S|O|N|D |1 |F[M|A|M[s |3 |a]|S|O|N|D|I [F|M]|A

Jan2,2014

http://timeglider.com/timeline/5ca2daa6078caaf4
http://bit.ly/1bvusqn
http://bit.ly/1bvusqn
http://bit.ly/1bvusqn

59

Today’s Presentation Results

= We have found and disclosed two new exploitable vulnerabilities.

" These vulnerabilities would allow an attacker to take control of the
system before any security is enabled, and persist indefinitely via
the SPI flash chip.

= We have also invented a new technique to make BIOS/kernel
exploits more reliable by staging shellcode into UEFI non-volatile
variables, which will be mapped at predictable locations.

= We have shown The Watcher, which is an example of how an
attacker can gain OS-independent arbitrary code execution in the
most privileged x86 execution domain, System Management Mode.

= We have updated our public "Copernicus" software which can
integrity check a BIOS to look for backdoors, or check for the
presence of known vulnerabilities.

© 2014 The MITRE Corporation. All rights reserved.

60

Conclusions

" |t's time to get serious about firmware security
— Start patching your BIOSes
— Start demanding firmware inspection capabilities

= UEFI has more tightly coupled the bonds of the operating system
and the platform firmware

= Specifically, the EFI variable interface acts as a conduit by which a
less privileged entity (the operating system) can pass information
for consumption by a more privileged entity (the platform firmware)

— We have demonstrated how a vulnerability in this interface can allow
an attacker to gain control of the firmware

= Although the authors believe UEFI to ultimately be a good thing for
the overall state of platform security, a more thorough audit of the
UEFI code and OEMSs/IBVs' extra "value added" code is needed

= MITRE's Copernicus continues to be updated and remains the only
enterprise-deployable system that can integrity check and
vulnerability check your BIOSes

— But MITRE doesn't make products so industry needs to come talk to
us

© 2014 The MITRE Corporation. All rights reserved.

61

Questions & Contact

= {ckallenberg, xkovah, jbutterworth, scornwell} @ mitre . org
= Copernicus @ mitre . org

= @coreykal, @xenokovah, @jwbutterworth3, @sscOrnwell
= @MITREcorp

= Ps., go check out OpenSecurityTraining.info!
= @OpenSecTraining

o MITRE |
14 The MITRE Corporation. All rights

ed.

62

References

= [1] Attacking Intel BIOS — Alexander Tereshkin & Rafal Wojtczuk — Jul. 2009
http://invisiblethingslab.com/resources/bh0O9usa/Attacking%?20intel%20BIOS.pdf

= [2] A Tale of One Software Bypass of Windows 8 Secure Boot — Yuriy Bulygin —
Jul. 2013 http://blackhat.com/us-13/briefings.htmi#Bulygin

= [3] Attacking Intel Trusted Execution Technology - Rafal Wojtczuk and Joanna
Rutkowska — Feb. 2009
http://invisiblethingslab.com/resources/bh09dc/Attacking%20Intel%20TXT%20-
%20paper.pdf

= [4] Defeating Signed BIOS Enforcement — Kallenberg et al., Sept. 2013 —
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-
enforcement.pdf

= [5] BIOS Chronomancy: Fixing the Core Root of Trust for Measurement —
Butterworth et al., May 2013
http://www.nosuchcon.org/talks/D2 01 Butterworth BIOS Chronomancy.pdf

= [6] IsGameOver() Anyone? — Rutkowska and Tereshkin — Aug 2007
http://invisiblethingslab.com/resources/bh07/IsGameOver.pdf

= [7] Defeating Windows Driver Signature Enforcement — jOOru - Dec 2012
http://jO0ru.vexillium.org/?p=1455

© 2014 The MITRE Corporation. All rights reserved.

http://invisiblethingslab.com/resources/bh09usa/Attacking Intel BIOS.pdf
http://invisiblethingslab.com/resources/bh09usa/Attacking Intel BIOS.pdf
http://invisiblethingslab.com/resources/bh09usa/Attacking Intel BIOS.pdf
http://blackhat.com/us-13/briefings.html
http://blackhat.com/us-13/briefings.html
http://blackhat.com/us-13/briefings.html
http://invisiblethingslab.com/resources/bh09dc/Attacking Intel TXT - paper.pdf
http://invisiblethingslab.com/resources/bh09dc/Attacking Intel TXT - paper.pdf
http://invisiblethingslab.com/resources/bh09dc/Attacking Intel TXT - paper.pdf
http://invisiblethingslab.com/resources/bh09dc/Attacking Intel TXT - paper.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.mitre.org/sites/default/files/publications/defeating-signed-bios-enforcement.pdf
http://www.nosuchcon.org/talks/D2_01_Butterworth_BIOS_Chronomancy.pdf
http://invisiblethingslab.com/resources/bh07/IsGameOver.pdf
http://invisiblethingslab.com/resources/bh07/IsGameOver.pdf
http://invisiblethingslab.com/resources/bh07/IsGameOver.pdf
http://j00ru.vexillium.org/?p=1455

63

References 2

= [8] Copernicus 2 - SENTER The Dragon — Kovah et al. — March 2014
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-
Dragon-CSW-.pdf

= [9] Preventing and Detecting Xen Hypervisor Subversions — Rutkowska and
Wojtczuk — Aug 2008 http://www.invisiblethingslab.com/resources/bh08/part2-
full.pdf

= [10] A New Breed of Rootkit: The Systems Management Mode (SMM) Rootkit —
Sparks and Embleton — Aug 2008 http://www.eecs.ucf.edu/~czou/research/SMM-
Rootkits-SecurecomO08.pdf

= [11] Using SMM for "Other Purposes" — BSDaemon et al — March 2008
http://phrack.org/issues/65/7.html

= [12] Using SMM to Circumvent Operating System Security Functions — Duflot et
al. — March 2006 http://fawlty.cs.usfca.edu/~cruse/cs630f06/duflot.pdf

= [13] Setup for Failure: Defeating UEFI SecureBoot — Kallenberg et al. — April 2014
http://www.syscan.org/index.php/download/qget/6e597f6067493dd581eed737146f
3afb/SyScan2014 CoreyKallenberg SetupforFailureDefeatingSecureBoot.zip

© 2014 The MITRE Corporation. All rights reserved.

http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.mitre.org/sites/default/files/publications/Copernicus2-SENTER-the-Dragon-CSW-.pdf
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.invisiblethingslab.com/resources/bh08/part2-full.pdf
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://www.eecs.ucf.edu/~czou/research/SMM-Rootkits-Securecom08.pdf
http://phrack.org/issues/65/7.html
http://phrack.org/issues/65/7.html
http://fawlty.cs.usfca.edu/~cruse/cs630f06/duflot.pdf
http://fawlty.cs.usfca.edu/~cruse/cs630f06/duflot.pdf
http://www.syscan.org/index.php/download/get/6e597f6067493dd581eed737146f3afb/SyScan2014_CoreyKallenberg_SetupforFailureDefeatingSecureBoot.zip
http://www.syscan.org/index.php/download/get/6e597f6067493dd581eed737146f3afb/SyScan2014_CoreyKallenberg_SetupforFailureDefeatingSecureBoot.zip
http://www.syscan.org/index.php/download/get/6e597f6067493dd581eed737146f3afb/SyScan2014_CoreyKallenberg_SetupforFailureDefeatingSecureBoot.zip

